Ostrowski Type Inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Ostrowski type inequalities

We present optimal upper bounds for the deviation of a fuzzy continuous function from its fuzzy average over [a, b] ⊂ R, error is measured in the D-fuzzy metric. The established fuzzy Ostrowski type inequalities are sharp, in fact attained by simple fuzzy real number valued functions. These inequalities are given for fuzzy Hölder and fuzzy differentiable functions and these facts are reflected ...

متن کامل

High order Ostrowski type inequalities

We generalize Ostrowski inequality for higher order derivatives, by using a generalized Euler type identity. Some of the inequalities produced are sharp, namely attained by basic functions. The rest of the estimates are tight. We give applications to trapezoidal and mid-point rules. Estimates are given with respect to L∞ norm. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

Some General Ostrowski Type Inequalities

A new general Ostrowski type inequality for functions whose (n − 1)th derivatives are continuous functions of bounded variation is established. Some special cases are discussed.

متن کامل

On some Ostrowski type inequalities

In this paper we study Ostrowski type inequalities. We generalize some of the results presented in [1]. 2000 Mathematical Subject Classification: 26D15

متن کامل

Ostrowski type inequalities involving conformable fractional integrals

In the article, we establish several Ostrowski type inequalities involving the conformable fractional integrals. As applications, we find new inequalities for the arithmetic and generalized logarithmic means.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1995

ISSN: 0002-9939

DOI: 10.2307/2161906